Molecular dynamics predictions of viscosity for organophosphorus liquids

Author:

Ivanova Ella V.1,Gor Gennady Y.1ORCID

Affiliation:

1. Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology University Heights Newark New Jersey USA

Abstract

AbstractWhen studying physical properties of highly toxic chemicals, such as chemical warfare agents (CWAs), molecular dynamics (MD) simulations can serve as an alternative to experimental measurements. We performed MD simulations to calculate viscosity of four organophosphorus liquids, CWAs, sarin, and soman, as well as their simulants, DMMP and DIMP, in the temperature range from 0 to . The molecules were represented with Transferable Potentials for Phase Equilibria United Atom (TraPPE‐UA) force field; the calculations were performed using the Green–Kubo method. The results for sarin and DMMP are in good agreement with previously published experimental data, which justifies the use of the TraPPE‐UA force field for other organophosphorus compounds. Therefore we predicted viscosity of DIMP and soman, for which the experimental data were unavailable. Our results suggest that for applications where liquid viscosity is important, DMMP is a suitable simulant for sarin, and DIMP is a suitable simulant for soman.

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3