A spectroscopic ellipsometry study of TiO2:ZrO2 on TiN/Si thin films prepared by Chemical Beam Vapor Deposition

Author:

Agnihotri Pratiksha1,Verma Aman1,Saini Anjali23,Rani Rashmi4,Maudez William4,Wagner Estelle4,Benvenuti Giacomo45,Banerjee Chandan6,Dutta Mrinal6,Rai Radheshyam17ORCID

Affiliation:

1. School of Physics and Material Science Shoolini University Solan Himachal Pradesh India

2. Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory New Delhi India

3. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India

4. 3D‐Oxide Saint Pauilly France

5. ABCD Technology Nyon Switzerland

6. National Institute of Solar Energy Gurgaon Haryana India

7. Department of Physics, School of Basic and Applied Sciences Lingaya’s Vidyapeeth, Faridabad Faridabad India

Abstract

The application of variable angle spectroscopic ellipsometry (VASE) to the characterization of thin films is very important because it facilitates the understanding of their physical and optical properties. To prepare a series of film samples consisting of TiO2:ZrO2 on a TiN/Si substrate, we employed the SYBILLA P200 equipment (manufactured by ABCD Technology) through the process of Chemical Beam Vapor Deposition (CBVD). TiO2:ZrO2 on TiN/Si thin films is a composite material that has gained significant attention in various technological applications, particularly in the field of thin film coatings on semiconductor substrates like TiN/Si. TiO2:ZrO2 thin films exhibit excellent dielectric properties and good thermal stability, making them suitable for various electronic and semiconductor applications. From FESEM and EDX analysis, it is found that with increase of Ti/Zr atomic ratio, grain size increases. Ellipsometric analysis reveals increase in film thickness and refractive index with increase in Ti/Zr atomic ratio. As the film continues to grow, changes in its microstructural phase led to a transition from a monolayer physical ellipsometry model to a bilayer physical model. This transition is due to the appearance of inhomogeneity in the TiO2:ZrO2 thin film. Dynamic fits obtained using a two‐layer physical model and a Cauchy–Lorentz optical model show three distinct phases in the film growth phase: a nucleation phase, a fusion phase, and a continuous layer phase. Although our proposed model shows satisfactory performance in most cases, the determination of the refractive index can be problematic for very thin thicknesses. The developed VASE modeling process should be able to generate TiO2:ZrO2characterization on TiN/Si substrate films using comparable physical and optical modeling considerations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3