Mass spectrometry‐based gas phase intramolecular benzyl migration in sparsentan, a novel endothelin and angiotensin II receptor antagonist

Author:

Mane Sudam S.1ORCID,Ghaste Manoj2,Dearden David V.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84602‐1030 USA

2. Analytical Chemistry Department Nelson Laboratories 6280 S. Redwood Road Salt Lake City Utah 84123 USA

Abstract

AbstractWe report a collision‐induced dissociation (CID) based gas phase rearrangement study using quadrupole time‐of‐flight mass spectrometry coupled with liquid chromatography on a novel endothelin and angiotensin II receptor antagonist, sparsentan. We performed tandem mass spectrometry to identify precursor and fragment ion relationships and assigned structures for major fragment ions. We propose a benzyl migration mechanism based on bond length measurements in density functional theory (B3LYP/6‐31+G*) optimized geometries of protonated sparsentan and its m/z 547 fragment. Protonated sparsentan undergoes loss of ethanol, which yields a resonance‐stabilized benzylic cation with m/z 547, which further fragments into m/z 353 via benzyl migration, where the benzylic cation migrates to one of the nucleophilic nitrogen atoms followed by proton transfer from the sulfonamide nitrogen to a carbonyl oxygen, resulting in a neutral loss of mass 194. Further fragmentation of m/z 353 results in m/z 258, which undergoes radical and neutral loss to yield m/z 193 and 194, respectively. The proposed mechanism of generation of m/z 353 was confirmed by CID of deuterated sparsentan. Considering the importance of gas phase rearrangements of organic molecules in structural identifications as well as the novelty of the molecule, these findings will be helpful for future studies to predict gas phase benzyl migration in sparsentan analogs and for degradation product and metabolite identification of sparsentan and its analogs using LC–MS.

Funder

National Science Foundation

Department of Chemistry and Biochemistry, Brigham Young University

Publisher

Wiley

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3