Mineral‐solubilizing microbial inoculants facilitate the rejuvenation of soil multifunctionality and plant growth at abandoned mine sites

Author:

Li Chong12ORCID,Jia Zhaohui1,Tang Yingzhou1,Zhang Shuifeng3,Li Tao1,Ma Shilin1,Nie Hui1,Zhai Lu45,Zhang Bo5,Liu Xin1,Zhang Jinchi1ORCID,Müller Christoph267

Affiliation:

1. Co‐Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Rejuvenation Nanjing Forestry University Nanjing China

2. Institute of Plant Ecology Justus‐Liebig University Giessen Giessen Germany

3. Faculty of Information Technology Nanjing Forest Police College Nanjing China

4. Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA

5. Department of Integrative Biology Oklahoma State University Stillwater Oklahoma USA

6. School of Biology and Environmental Science and Earth Institute University College Dublin Dublin Ireland

7. Liebig Centre for Agroecology and Climate Impact Research Justus Liebig University Giessen Germany

Abstract

AbstractThe mining industry continues to have considerable adverse effects on ecosystems, which necessitates the development of robust and effective strategies for the remediation of abandoned mine sites. One such approach involves the integration of mineral‐solubilizing microorganisms into existing external soil spray seeding technologies. These microorganisms have the capacity to reduce mineral particle sizes, stimulate plant growth, and facilitate the release of essential soil nutrients. Despite the potential benefits of mineral‐solubilizing microbial inoculants, their impacts on overall soil multifunctionality and microbial communities, associations with microbial diversity, soil multifunctionality, and plant growth remain largely unknown. To bridge these knowledge gaps, we conducted a 1‐year greenhouse experiment, which involved a comprehensive assessment of various parameters including soil nutrients, enzyme activities, functional gene copies, and microbial communities. Our findings unveiled that the application of mineral‐solubilizing microbial inoculants led to a significant augmentation of soil multifunctionality. Additionally, the application of microbial inoculants increased the relative abundances of Bacilli (class), Bacillales (order), Bacillaceae (family), and Bacillus (genus). While no significant relationship emerged between microbial alpha diversity and soil multifunctionality, our investigation found positive correlations between the Bacillus groups, keystone ecological cluster, and soil multifunctionality. Furthermore, our results suggested that the indirect impact of microbial inoculants on plant growth was primarily channeled indirectly through their influence on Bacilli, keystone ecological cluster, and soil multifunctionality, as opposed to changes in the overall bacterial or fungal diversity. Overall, our study underscores the significance of mineral‐solubilizing microbial inoculants for the rejuvenation of abandoned mine sites, while providing valuable insights for future research aimed at optimizing the efficacy of external soil spray seeding techniques.

Funder

China Scholarship Council

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3