Highly adhesive and impact‐strengthening supramolecular polyurethane derived from facile incorporation of UPy motifs toward energy dissipation binding applications

Author:

Li Zixian1,Zhu Jun2,Niu Peixin1,Wang Hui1,Sun Ailing13,Wei Liuhe13,Huang Xiancong4,Chen Junxian4,Li Yuhan13ORCID

Affiliation:

1. College of Chemistry and Green Catalysis Center Zhengzhou University Zhengzhou People's Republic of China

2. College of Chemistry Engineering Zhengzhou University Zhengzhou People's Republic of China

3. Zhengzhou Key Laboratory of Elastic Sealing Materials Zhengzhou People's Republic of China

4. Systems Engineering Institute, AMS, PLA Beijing China

Abstract

AbstractThe implementation of hot melt adhesives reaching structural adhesion with both impact resistance and detachability is of prospective industry value but still remains challenging. In this work, 2‐amino‐4‐hydroxy‐6‐methylpyrimidine serving as both chain extender and end‐capping reagent due to its isomerism, was developed to construct a supramolecular polyurethane‐derived hot melt structural adhesive. The as‐synthesized PUM elastomers occurs obvious decrease of molecular weight at 80°C compared to room temperature, revealing the existence of self‐complementary 2‐ureido‐4[1H]‐pyrimidinone (UPy) motifs at chain ends. This unique structure allows to chemically incorporate abundant hierarchical and quadruple hydrogen bonding moieties, which results in remarkable enhancement of shear strength, ranging from 6.4 to 16.6 MPa. More importantly, it also exhibits unique impact‐strengthening and reproducible adhering ability. The Hopkinson‐press‐bar and cyclic tensile tests manifest that quadruple hydrogen bonds play a pivotal role in buffering external forces and increasing energy dissipation when exposed to high velocity impacts. The true stress and strain synchronously increase as the strain rate augments while the shear strength can even roar up to ~18 MPa at high tensile speed. With regard to mild synthetic conditions, atomic economic use of reactants, it is promising that this material has industrial potential to be utilized in applications referred to energy‐absorption and reproducible structural adhesion.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3