Multi‐year high‐frequency sampling provides new runoff and biogeochemical insights in a discontinuous permafrost watershed

Author:

Shatilla Nadine J.1,Tang Weigang1ORCID,Carey Sean K.1ORCID

Affiliation:

1. School of Earth, Environment & Society McMaster University Hamilton Ontario Canada

Abstract

AbstractPermafrost‐underlain watersheds in the subarctic are sensitive to warming as small changes in ground thermal status will alter all components of the hydrological cycle. Globally, observed increases in winter flows and shifting water chemistry have most often been ascribed to permafrost thaw and deepening runoff pathways. However, there remain few studies in headwater catchments that examine coupled flow‐chemistry relations at high frequency over multiple years and seasons to evaluate the implications of environmental change. In this study, we use multi‐year high‐frequency measurement of discharge, specific conductance (SpC) and chromophoric dissolved organic matter (CDOM) along with traditional grab sampling of major ions to understand the sources and pathways of water and evaluate how distinct solutes are mobilized in a well‐studied subarctic basin in Yukon, Canada. Seasonally, the catchment exhibited considerable hysteresis in flow‐solute relations and had both chemostatic and dilution SpC–Q patterns with respect to major ions depending upon season and mobilization CDOM–Q signals. Storm events were extracted from high‐frequency data and normalized C–Q indices were determined and related to flow, catchment and meteorological variables. CDOM–Q events predominantly had an anti‐clockwise hysteresis and increases in DOC concentrations during storms, with some exception in the spring and fall. Conversely, SpC–Q events exhibited clockwise hysteresis and a dilution behaviour during events with less seasonal or inter‐annual variability. Information from this study supports previous conceptual models of thermally regulated runoff generation in a layered soil profile, yet also points to the importance of lateral connectivity and distal sources of solutes.

Funder

Canadian Foundation for Climate and Atmospheric Sciences

Global Water Futures

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3