Affiliation:
1. School for Energy Science and Engineering Indian Institute of Technology Guwahati Guwahati Assam India
2. School of Biotechnology Jawaharlal Nehru University New Delhi India
3. Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati Assam India
Abstract
AbstractMethanol is a potential alternate liquid transportation fuel for blending with gasoline. Biochemical conversion of methane to methanol is a green process for methanol production. This paper reports biochemical methanol production using type I γ‐proteobacteria Methylotuvimicrobium buryatense, which has particular importance from the viewpoint of scalable biological gas to liquid processes for industrial application. A statistical design of experiments (at the serum bottle level) was used to optimize fermentation parameters. Enhancement in methanol accumulation was attempted using methanol dehydrogenase inhibitors. This was followed by a validation experiment run in a bioreactor at optimum conditions. At optimum conditions (pH = 7, phosphate concentration = 140 mM, temperature = 25°C) and optical density (600 nm) of 0.3, a methanol titer of 8.54 mM was achieved in 24 h (methane conversion = 20.8%). The addition of a methanol dehydrogenase inhibitor (0.5 mM Ethylenediaminetetraacetic acid) enhanced the methanol concentration to 10.37 mM. Experiments in a 3.7 L bioreactor using 1.68 bar headspace pressure and optical density (600 nm) of 0.1 yielded 23.7 mM methanol in 24 h (methane conversion = 47.8%). The methanol titers obtained using M. buryatense 5GB1C in 24 h fermentation are significantly higher than several previously reported methanotrophs. These results demonstrate the potential of M. buryatense 5GB1C for the biochemical synthesis of methanol.
Funder
Department of Biotechnology, Ministry of Science and Technology, India
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献