First successful artificial insemination of the endangered Louisiana pinesnake, Pituophis ruthveni

Author:

Roberts Beth M.1ORCID,Sandfoss Mark R.1ORCID,Schwartz Tonia S.2ORCID,Lindsey Alexis2,Hinkson Kristin M.13ORCID,Reichling Steven B.1ORCID

Affiliation:

1. Department of Conservation and Research Memphis Zoo Memphis Tennessee USA

2. Department of Biological Sciences Auburn University Auburn Alabama USA

3. BCS Laboratories Gainesville Florida USA

Abstract

AbstractThe Louisiana pinesnake (Pituophis ruthveni) is considered one of the rarest snakes in North America and was federally listed under the Endangered Species Act in 2018. Captive breeding and reintroduction of zoo‐bred hatchlings has been successful, however, limited founders in the captive population and the inability to bring new, wild genes into the captive colony presents a major concern for the conservation of this species. The use of artificial insemination (AI) was first applied to snakes in the 1980s but further development of the technique has since received little attention. Our goal was to develop a method of AI for use in breeding Louisiana pinesnakes to facilitate gene flow from wild to captive populations. We inseminated two captive Louisiana pinesnakes with semen collected from one donor male, novel to both females. Timing of AI occurred following the emergence of females from brumation, and when large, distinct follicles were detected using digital palpation. Females were inseminated four and five times over a period of 14 and 19 days, respectively, using fresh and 2‐day refrigerator stored semen. One female laid seven eggs, which resulted in four fertile eggs and two viable hatchlings, while the second female produced three fertile of seven eggs laid but no viable hatchlings. Genetic analyses confirmed the donor male was the sire of hatchlings. This is the first successful AI of an endangered snake species and provides a framework for the use and optimization of assisted reproductive technologies for use in conservation breeding programs.

Publisher

Wiley

Subject

Animal Science and Zoology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3