Neutralization of Nerve Growth Factor Impairs Proliferation and Differentiation of Adult Neural Progenitors in the Subventricular Zone

Author:

Scardigli Raffaella12,Capelli Paolo3,Vignone Domenico2,Brandi Rossella2,Ceci Marcello2,Regina Federico2,Piras Eleonora4,Cintoli Simona5,Berardi Nicoletta56,Capsoni Simona3,Cattaneo Antonino23

Affiliation:

1. Institute of Translational Pharmacology, National Research Council, Rome, Italy

2. European Brain Research Institute (EBRI), Rome, Italy

3. Scuola Normale Superiore, Pisa, Italy

4. Neuroimmunology Unit, Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy

5. Institute of Neuroscience, National Research Council, Pisa, Italy

6. Department of Neuroscience, Psychology, Drug Research Child Health NEUROFARBA, Florence University, Florence, Italy

Abstract

Abstract Adult neurogenesis is a multistep process regulated by several extrinsic factors, including neurotrophins. Among them, little is known about the role of nerve growth factor (NGF) in the neurogenic niches of the mouse. Here we analyzed the biology of adult neural stem cells (NSCs) from the subventricular zone (SVZ) of AD11 anti-NGF transgenic mice, in which the expression of the recombinant antibody aD11 leads to a chronic postnatal neutralization of endogenous NGF. We showed that AD11-NSCs proliferate 10-fold less, with respect to their control counterparts, and display a significant impairment in their ability to differentiate into β-tubulin positive neurons. We found a considerable reduction in the number of SVZ progenitors and neuroblasts also in vivo, which correlates with a lower number of newborn neurons in the olfactory bulbs of AD11 mice and a severe deficit in the ability of these mice to discriminate between different odors. We also demonstrated that, in AD11 mice, the morphology of both SVZ-resident and neurosphere-derived astrocytes is significantly altered. We were able to reproduce the AD11 phenotype in vitro, by acutely treating wild type NSCs with the anti-NGF antibody, further demonstrating that both the proliferation and the differentiation defects are due to the NGF deprivation. Consistently, the proliferative impairment of AD11 progenitors, as well as the atrophic morphology of AD11 astrocytes, can be partly rescued in vitro and in vivo by exogenous NGF addition. Altogether, our results demonstrate a causal link between NGF signaling and proper proliferation and differentiation of neural stem cells from the SVZ. Stem Cells  2014;32:2516–2528

Funder

Italian Ministry of Higher Education and Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3