Mononuclear Cells from Dedifferentiation of Mouse Myotubes Display Remarkable Regenerative Capability

Author:

Yang Zhong12,Liu Qiang2,Mannix Robert J.345,Xu Xiaoyin6,Li Hongli2,Ma Zhiyuan2,Ingber Donald E.345,Allen Paul D.2,Wang Yaming27

Affiliation:

1. College of Laboratory Medicine Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China

2. Department of Anesthesia Perioperative and Pain Medicine, Boston, Massachusetts, USA

3. Vascular Biology Program Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

4. Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA

5. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

6. Department of Radiology, Functional and Molecular Imaging Center Brigham & Women’s Hospital, Boston, Massachusetts, USA

7. Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA

Abstract

Abstract Certain lower organisms achieve organ regeneration by reverting differentiated cells into tissue-specific progenitors that re-enter embryonic programs. During muscle regeneration in the urodele amphibian, postmitotic multinucleated skeletal myofibers transform into mononucleated proliferating cells upon injury, and a transcription factor-msx1 plays a role in their reprograming. Whether this powerful regeneration strategy can be leveraged in mammals remains unknown, as it has not been demonstrated that the dedifferentiated progenitor cells arising from muscle cells overexpressing Msx1 are lineage-specific and possess the same potent regenerative capability as their amphibian counterparts. Here, we show that ectopic expression of Msx1 reprograms postmitotic, multinucleated, primary mouse myotubes to become proliferating mononuclear cells. These dedifferentiated cells reactivate genes expressed by embryonic muscle progenitor cells and generate only muscle tissue in vivo both in an ectopic location and inside existing muscle. More importantly, distinct from adult muscle satellite cells, these cells appear both to fuse with existing fibers and to regenerate myofibers in a robust and time-dependent manner. Upon transplantation into a degenerating muscle, these dedifferentiated cells generated a large number of myofibers that increased over time and replenished almost half of the cross-sectional area of the muscle in only 12 weeks. Our study demonstrates that mammals can harness a muscle regeneration strategy used by lower organisms when the same molecular pathway is activated. Stem Cells  2014;32:2492–2501

Funder

NIH/NIAMS

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3