Computational fluid dynamics‐based virtual angiograms for the detection of flow stagnation in intracranial aneurysms

Author:

Hadad Sara1,Karnam Yogesh1,Mut Fernando1ORCID,Lohner Rainald2ORCID,Robertson Anne M.3ORCID,Kaneko Naoki4,Cebral Juan R.1

Affiliation:

1. Department of Bioengineering George Mason University Fairfax Virginia USA

2. Center for Computational Fluid Dynamics, College of Science George Mason University Fairfax Virginia USA

3. Department of Mechanical Engineering and Material Science University of Pittsburgh Pittsburgh Pennsylvania USA

4. Department of Interventional Neuroradiology University of California Los Angeles Los Angeles California USA

Abstract

AbstractThe goal of this study was to test if CFD‐based virtual angiograms could be used to automatically discriminate between intracranial aneurysms (IAs) with and without flow stagnation. Time density curves (TDC) were extracted from patient digital subtraction angiography (DSA) image sequences by computing the average gray level intensity inside the aneurysm region and used to define injection profiles for each subject. Subject‐specific 3D models were reconstructed from 3D rotational angiography (3DRA) and computational fluid dynamics (CFD) simulations were performed to simulate the blood flow inside IAs. Transport equations were solved numerically to simulate the dynamics of contrast injection into the parent arteries and IAs and then the contrast retention time (RET) was calculated. The importance of gravitational pooling of contrast agent within the aneurysm was evaluated by modeling contrast agent and blood as a mixture of two fluids with different densities and viscosities. Virtual angiograms can reproduce DSA sequences if the correct injection profile is used. RET can identify aneurysms with significant flow stagnation even when the injection profile is not known. Using a small sample of 14 IAs of which seven were previously classified as having flow stagnation, it was found that a threshold RET value of 0.46 s can successfully identify flow stagnation. CFD‐based prediction of stagnation was in more than 90% agreement with independent visual DSA assessment of stagnation in a second sample of 34 IAs. While gravitational pooling prolonged contrast retention time it did not affect the predictive capabilities of RET. CFD‐based virtual angiograms can detect flow stagnation in IAs and can be used to automatically identify aneurysms with flow stagnation even without including gravitational effects on contrast agents.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3