A spatially explicit framework for assessing ecosystem service supply risk under multiple land‐use scenarios in the Xi'an Metropolitan Area of China

Author:

Peng Lixian1ORCID,Zhang Liwei1ORCID,Li Xupu1,Zhao Wudong1,Liu Yu1,Wang Zhuangzhuang2,Wang Hao1,Jiao Lei1ORCID

Affiliation:

1. School of Geography and Tourism Shaanxi Normal University Xi'an China

2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental Sciences CAS Beijing China

Abstract

AbstractRapid global urbanization has perturbed ecosystem structures and functions, resulting in ecological risk and threatening sustainable human well‐being and socioeconomic development. However, scientific indicators to analyze ecosystem service (ES) risk patterns need to be explored in detail. In addition, studies on ES supply risk are stagnating on historical or status explorations, especially from the view of disturbance from land‐use changes. This study seeks to develop a framework for modeling past‐future ES supply risk pattern evaluation and probing into ES risk patterns under different future land‐use scenarios. To achieve this objective, the framework integrates the Future Land Use Simulation (FLUS) model, the Intelligent Urban Ecosystem Management System (IUEMS) model, and an established indicator system incorporating ES supply trend, hotspots and coldspots, and ES trade‐offs, and synergies. The results show that: (1) In 2050, the supply of climate regulation in the Xi'an Metropolitan Area (XMA) will increase, while that of carbon sequestration and recreation will decrease. In 2050, the supply of climate regulation is the highest under ecological protection (EP) scenario, while the supply of carbon sequestration and recreation are the highest under cropland protection (CP) scenario. (2) From 2000 to 2050, the hotspots and coldspots of climate regulation increase in both natural development (ND) scenario and CP scenario. Notably, CP scenario experiences the most significant reduction in extremely significant hotspots and coldspots of carbon sequestration. From 2000 to 2050, at the regional and pixel scales, climate regulation and carbon sequestration mainly show trade‐offs, and carbon sequestration and recreation show synergies. (3) ES supply risk in XMA is high in the center and low in the north and south. The ES supply risk from 2000 to 2050 is increasing, with expanding “extremely high risk”, “high risk”, and “extremely safe” areas. ES supply risk management should adhere to more strict land‐use policies and guidelines, management zoning for areas with different levels of ES risk, and an accurate understanding of ES trade‐offs and synergies for scientific risk management. This study could provide theoretical and technical references for ES risk assessment research and promote scientific ecological risk management.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3