Failure mode and load prediction of steel bridge girders through 3D laser scanning and machine learning methods

Author:

Tzortzinis Georgios1,Wittig Jan2,Filippatos Angelos3,Gude Maik1,Provost Aidan4,Ai Chengbo4,Gerasimidis Simos4

Affiliation:

1. Dresden University of Technology Dresden Germany

2. Oxford University Oxford UK

3. University of Patras Patras Greece

4. University of Massachusetts Amherst Amherst MA USA

Abstract

AbstractCorrosion poses a significant threat to the longevity of steel bridges, impacting overall structural integrity. To effectively assess the structural condition of corroded steel bridges, conventional methods rely on visual inspections or single point measurements. To enhance and modernize this approach, this study introduces a novel framework integrating laser scanning data, computational models, and convolutional neural networks (CNNs). The CNN models are trained on a data set consisting of more than 1400 artificial corrosion scenarios generated by parameterizing real scan data from naturally corroded girders. This innovative method predicts the residual capacity and failure mode of corroded beam ends, achieving a low error rate of up to 3.3%. Unlike established evaluation procedures, the proposed evaluation framework directly utilizes post‐processed laser scanner output, eliminating the need for feature extraction and calculations.

Publisher

Wiley

Reference16 articles.

1. U.S. Department of Transportation Federal Highway Administration(2022)National Bridge Inspection Standards[online]https://www.fhwa.dot.gov/bridge/nbis2022.cfm[accessed on: 21 Feb. 2024]

2. Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability

3. Javier E. M.(2020)Methods for Evaluation of the Remaining Strength in Steel Bridge Beams with Section Losses due to Corrosion Damage(Master's thesis). Virginia Tech.

4. Truong‐Hong L. Falter H. Lennon D. &Laefer D. F.(2016)Framework for Bridge Inspection with Laser Scanning. Proceedings of the EASEC‐14 Structural Engineering and Construction Ho Chi Minh City Vietnam

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3