GRRLN: Gated Recurrent Residual Learning Networks for code clone detection

Author:

Zhang Xiangping123ORCID,Liu Jianxun23,Shi Min4

Affiliation:

1. Hunan Automotive Engineering Vocational College Zhuzhou Hunan China

2. School of Computer Science and Technology Hunan University of Science and Technology Xiangtan Hunan China

3. Hunan Provincial Key Lab. for Services Computing and Novel Software Technology Hunan University of Science and Technology Xiangtan Hunan China

4. Harvard Ophthalmology AI Lab Harvard Medical School Boston Massachusetts USA

Abstract

AbstractCode clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair as a clone or not based on a pre‐defined threshold. In reality, there are various types of code clone subject to the degree of how a pair of code fragments are similar to each other. To investigate the effect of different code clone detection manners on the clone detection result, we propose Gated Recurrent Residual Learning Networks (GRRLN), a novel neural network model for code clone detection. To train GRRLN, we first represent each code fragment as a statement‐level tree sequence derived from the whole abstract syntax tree (AST). Then, a gated recurrent neural network with residual connections is adopted to fully extract the semantics of all individual statement trees together with their dependency relationships across the input statement sequence. Finally, the output representations of code fragments by GRRLN are used for similarity calculation and clone detection. We evaluate GRRLN using two real‐world datasets for code clone detection and clone type classification. Experiments show that GRRLN achieves promising and compelling results and meanwhile needs significantly less time and memory consumption compared with the state‐of‐the‐art methods.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3