3D mask based lung function monitoring system using machine learning for early identification of lung disorders

Author:

Bhansali Ashok1ORCID,Rekha P. M.2ORCID,Shahapure Nagamani H.2ORCID,Pallavi G. B.3ORCID,Punitha K.4ORCID,Surendrarao Honnahalli Shruthishree5ORCID

Affiliation:

1. Department of Computer Engineering and Applications GLA University Mathura Uttar Pradesh India

2. Department of Information Science and Engineering JSS Academy of Technical Education Bangalore Karnataka India

3. Department of Computer Science and Engineering B.M.S College of Engineering Bangalore Karnataka India

4. SCOPE, Vellore Institute of Technology Chennai Tamil Nadu India

5. Department of Computer Science and Engineering Jain (Deemed to be University) Bengaluru Karnataka India

Abstract

AbstractEarly identification of illness can aid in lowering the death rate related to lung illnesses. Asthma, Chronic Obstructive Pulmonary Disease (COPD), and bronchiectasis are all chronic respiratory illnesses that cause irritation and oedema of the airway due to increased mucus discharge. Monitoring the asthmatic patient's physiological state is vital to avoiding dangerous circumstances. This study offers a regular lung function monitoring system that employs Machine Learning (ML) approach to aids in the prompt detection of symptoms of illness and the prevention of significant epidemics of the lung condition. A collection of sensors are coupled to the microcontroller in a 3D mask created using 3D printing technology. When a person wearing a face mask breathes in and out, the sensor values are instantly retrieved. The sensor data is sent to the cloud via a Wi‐Fi module for additional evaluation, and categorisation is performed using genetic algorithms, Support Vector Machine (SVM), and Principal Component Analysis (PCA). The GA, SWM, and PCA algorithms identify lung sickness using data from sensors obtained from the 3D masks through the web interface. There were 250 participants in total, comprising persons from all ages, smoker and those who do not smoke as well as asthmatics. The classifiers are trained utilising a set of pretrained values obtained from freely accessible datasets. Furthermore, patients are alerted when physiological indicators deviate from normal and when favourable atmospheric circumstances change.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3