Efficient multiscale spatial attention 3D abdominal multiorgan segmentation model

Author:

Yan Chenxi1,Hou Huimin2,Shen Tongtong1,Xu Huafei1,Zhai Chen1,Zheng Wen13ORCID

Affiliation:

1. Institute of Public‐Safety and Big Data, College of Data Science Taiyuan University of Technology Jinzhong China

2. Department of Urology Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences Beijing China

3. Shanxi Engineering Research Centre for Intelligent Data Assisted Treatment Changzhi Medical College Changzhi China

Abstract

AbstractAccurate and efficient 3D medical image segmentation models are critical for clinical applications. However, many models which performed well in recent years have consumed significant computational cost, especially those based on self‐attention. For more efficient and accurate segmentation of medical 3D images, we develop an efficient multiscale spatial attention model for 3D abdominal multiorgan segmentation. We use 1D and 2D kernels in the encoder and decoder modules to simulate 3D kernels to reduce the number of parameters and computational cost. Furthermore, we use the lightweight spatial attention and mixed pooling module to capture cross‐dimensional information, multiscale features, and long‐range contextual information. We achieved a Dice Similarity Coefficient (DSC) of 89.86 and a Normalized Surface Dice (NSD) of 78.2 on the FLARE dataset with only 1183 M GPU memory usage, 9 M parameters, and 193G floating point operations(FLOPs).

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference39 articles.

1. Computed Tomography–Based Deep Learning Model for Assessing the Severity of Patients With Connective Tissue Disease–Associated Interstitial Lung Disease

2. Diagnosis of diabetic kidney disease in whole slide images via AI-driven quantification of pathological indicators

3. Body Part Regression With Self-Supervision

4. YanK CaiJ JinD et al.Self‐supervised learning of pixel‐wise anatomical embeddings in radiological images (2020).https://arxiv.org/abs 2012.

5. IsenseeF PetersenJ KleinA et al.nnu‐net: self‐adapting framework for U‐Net‐based medical image segmentation. arXiv preprint arXiv:1809.10486.2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3