Ultrahigh compressive strength and heat resistance of polystyrene/polyphenylene oxide foams of supercritical carbon dioxide foaming

Author:

Li Zhuolun12,Tang Yujing12,Wang Yaqiao13,Wang Xiangdong12,Chen Shihong12ORCID

Affiliation:

1. College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing People's Republic of China

2. Institute of chemical and materials engineering Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing People's Republic of China

3. College of Materials Science and Engineering Fujian University of Technology Fujian Fuzhou People's Republic of China

Abstract

AbstractPolystyrene (PS) foam materials are lightweight, but suffer from poor compressive strength and heat resistance, among other problems, which limit their application. Herein, a method for preparing PS foam with high compressive strength and high heat resistance using supercritical CO2 is proposed. PS/polyphenylene oxide (PPO) blends were prepared using a corotating intermeshing twin‐screw extruder. The results showed that PPO exhibited excellent molecular‐level compatibility with PS, which substantially improved mechanical properties and heat resistance of PS. Foam samples of PS/PPO blends with the same expansion ratio were prepared via batch foaming experiments, and the compressive strength of different foams was determined at different temperatures. At room temperature, the compressive strength of the PS/PPO‐30% foam increased by 173% compared with pure PS foam. As the testing temperature increased from 30 to 120°C, the compressive strength of pure PS foams decreased rapidly. Nevertheless, PS/PPO foams maintained high compressive strength at high temperatures.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3