An activation mechanism for cyclic degradation of clays in bounding surface plasticity

Author:

Palmieri Francesca12,Taiebat Mahdi1ORCID

Affiliation:

1. Department of Civil Engineering University of British Columbia Vancouver Canada

2. Arup Group Ltd. London UK

Abstract

AbstractDuring undrained cyclic loading, clayey soils experience substantial stiffness and strength degradation when subjected to shear amplitudes exceeding a critical threshold. This paper presents an enhanced bounding surface rate‐independent plasticity model, an evolution of the previous SANICLAY model, tailored to capture this specific behavior during cyclic loading. A distinguishing feature of the proposed model is the introduction of an activation mechanism. This mechanism triggers degradation modeling based on the applied cyclic shear amplitude. To measure this amplitude, the activation mechanism incorporates a novel state variable that serves as a proxy for the applied cyclic stress. The effectiveness of the proposed model is demonstrated by comparing it to experimental data from various materials subjected to cyclic shearing under undrained conditions. The study encompasses a broad range of constant strain or stress amplitudes. Compared to the reference model, the proposed model exhibits improved predictive accuracy for the stress‐strain response of clays at small amplitudes of cyclic loading and large number of cycles. Furthermore, it accounts for strength degradation due to cyclic loading.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3