Identification of Ubr1 as an amino acid sensor of steatosis in liver and muscle

Author:

Zhao Wanni1,Zhang Yansong2,Lin Siyuan23,Li Yajuan2,Zhu Alan Jian24,Shi Hanping1,Liu Min24ORCID

Affiliation:

1. Department of Gastrointestinal Surgery/Clinical Nutrition, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital Capital Medical University Beijing China

2. Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences Peking University Beijing China

3. Tsinghua‐Peking Center for Life Sciences Tsinghua University Beijing China

4. Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies Peking University Beijing China

Abstract

AbstractBackgroundMalnutrition is implicated in human metabolic disorders, including hepatic steatosis and myosteatosis. The corresponding nutrient signals and sensors as well as signalling pathways have not yet been well studied. This study aimed to unravel the nutrient‐sensing mechanisms in the pathogenesis of steatosis.MethodsPlin2, a lipid droplet (LD) protein‐inhibiting lipolysis, is associated with steatosis in liver and muscle. Taking advantage of the Gal4‐UAS system, we used the Drosophila melanogaster wing imaginal disc as an in vivo model to study the regulation of Plin2 proteostasis and LD homeostasis. Drosophila Schneider 2 (S2) cells were used for western blotting, immunoprecipitation assays, amino acid‐binding assays and ubiquitination assays to further investigate the regulatory mechanisms of Plin2 in response to nutrient signals. Mouse AML12 hepatocytes, human JHH‐7 and SNU‐475 hepatoma cells were used for immunofluorescence, western blotting and immunoprecipitation to demonstrate that the mode of Plin2 regulation is evolutionarily conserved. In addition, we purified proteins from HEK293 cells and reconstituted in vitro cell‐free systems in amino acid‐binding assays, pulldown assays and ubiquitination assays to directly demonstrate the molecular mechanism by which Ubr1 senses amino acids to regulate Plin2 proteostasis.ResultsAs a lipolysis inhibitor, Plin2 was significantly elevated in liver (P < 0.05) and muscle (P < 0.05) in patients with steatosis. Consistently, we found that the ubiquitin moiety can be conjugated to any Lys residue in Plin2, ensuring robust clearance of Plin2 by protein degradation. We further demonstrated that the E3 ubiquitin ligase Ubr1 targets Plin2 for degradation in an amino acid‐dependent manner. Ubr1 uses two canonical substrate‐binding pockets, independent of each other, to bind basic and bulky hydrophobic amino acids, respectively. Mechanistically, amino acid binding allosterically activates Ubr1 by alleviating Ubr1's auto‐inhibition. In the absence of amino acids, or when the amino acid‐binding capacity of Ubr1 is diminished, Ubr1‐mediated Plin2 degradation is inactivated, leading to steatosis.ConclusionsWe identified Ubr1 as an amino acid sensor regulating Plin2 proteostasis, bridging the knowledge gap between steatosis and nutrient sensing. Our work may provide new strategies for the prevention and treatment of steatosis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3