Physical exercise attenuates age‐related muscle atrophy and exhibits anti‐ageing effects via the adiponectin receptor 1 signalling

Author:

Chen Yuan‐Li12,Ma Yi‐Cheng1,Tang Jie3,Zhang Dan4,Zhao Qiu1,Liu Jian‐Jun5,Tang Hong‐Shu1,Zhang Jin‐Yu2,He Guang‐Hui2,Zhong Chi‐Hui2,Wu Yu‐Tong2,Wen Heng‐Ruo2,Ma Lan‐Qing4,Zou Cheng‐Gang1

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life Sciences Yunnan University Kunming Yunnan China

2. Faculty of Basic Medicine Kunming Medical University Kunming Yunnan China

3. Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College Kunming Yunnan China

4. Department of Digestive Diseases, The First Affiliated Hospital Kunming Medical University Kunming Yunnan China

5. Institute of Biomedical Engineering Kunming Medical University Kunming Yunnan China

Abstract

AbstractBackgroundAlthough the adiponectin signalling exerts exercise‐mimicking effects, whether this pathway contributes to the anti‐ageing benefits of physical exercise has not been established yet.MethodsSwim exercise training and wheel running were used to measure lifespan in the nematode Caenorhabditis elegans and skeletal muscle quality in mice, respectively. Muscle weight, muscle fibre cross‐sectional area (CSA) and myonuclei number were used to evaluate muscle mass. RNA sequencing (RNA‐Seq) analysis of skeletal muscle in exercised mice was used to study the underlying mechanisms. Western blot and immunofluorescence were performed to explore autophagy‐ and senescence‐related markers.ResultsThe C. elegans adiponectin receptor PAQR‐1/AdipoR1, but not PAQR‐2/AdipoR2, was activated (3.55‐fold and 3.48‐fold increases in p‐AMPK on Days 1 and 6, respectively, P < 0.001), which was involved in lifespan extension in exercised worms. Exercise training increased skeletal muscle mass index (1.29‐fold, P < 0.01), muscle weight (1.75‐fold, P < 0.001), myonuclei number (1.33‐fold, P < 0.05), muscle fibre CSA (1.39‐fold, P < 0.05) and capillary abundance (2.19‐fold, P < 0.001 for capillary density; 1.58‐fold, P < 0.01 for capillary number) in aged mice. Physical exercise reduced protein (2.94‐fold, P < 0.001) and mRNA levels (1.70‐fold, P < 0.001) of p16INK4a, a marker for cellular senescence, in skeletal muscle of aged mice. These beneficial effects of exercise on skeletal muscle of mice were dependent on AdipoR1. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for differentially expressed genes in skeletal muscle between exercised mice with and without AdipoR1 knockdown by RNA‐Seq analysis revealed that several KEGG pathways, such as ‘AMPK signalling pathway’ (P < 0.001), ‘FOXO signalling pathway’ (P < 0.001) and ‘autophagy’ (P < 0.001) were overrepresented. Knockdown of FoxO3a inhibited exercise‐mediated beneficial effects on skeletal muscle quality of mice by inhibiting autophagy/mitophagy (3.81‐fold reduction in LC3‐II protein, P < 0.001; 1.53‐fold reduction in BNIP3 protein, P < 0.05). Knockdown of daf‐16, the FoxO homologue in C. elegans, reduced autophagy (2.77‐fold and 2.06‐fold reduction in GFP::LGG‐1 puncta in seam cells and the intestine, respectively, P < 0.05) and blocked lifespan extension by exercise in worms.ConclusionsOur findings provide insights into how the AdipoR1 pathway has an impact on the anti‐ageing benefits of exercise and implicate that activation of the AdipoR1 signalling may represent a potential therapeutic strategy for reducing age‐related loss of skeletal muscle.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3