Muscle stem cells contribute to long‐term tissue repletion following surgical sepsis

Author:

Schmitt Rebecca E.123,Dasgupta Aneesha123,Arneson‐Wissink Paige C.1,Datta Srijani4,Ducharme Alexandra M.1,Doles Jason D.123ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA

2. Department of Anatomy, Cell Biology, and Physiology Indiana University School of Medicine Indianapolis IN USA

3. Indiana Center for Musculoskeletal Health Indianapolis IN USA

4. Eden Prairie High School Eden Prairie MN USA

Abstract

AbstractBackgroundOver the past decade, advances in sepsis identification and management have resulted in decreased sepsis mortality. This increase in survivorship has highlighted a new clinical obstacle: chronic critical illness (CCI), for which there are no effective treatment options. Up to half of sepsis survivors suffer from CCI, which can include multi‐organ dysfunction, chronic inflammation, muscle wasting, physical and mental disabilities, and enhanced frailty. These symptoms prevent survivors from returning to regular day‐to‐day activities and are directly associated with poor quality of life.MethodsMice were subjected to cecal ligation and puncture (CLP) with daily chronic stress (DCS) as an in vivo model to study sepsis late‐effects/sequelae on skeletal muscle components. Longitudinal monitoring was performed via magnetic resonance imaging, skeletal muscle and/or muscle stem cell (MuSCs) assays (e.g., post‐necropsy wet muscle weights, minimum Feret diameter measurements, in vitro MuSC proliferation and differentiation, number of regenerating myofibres and numbers of Pax7‐positive nuclei per myofibre), post‐sepsis whole muscle metabolomics and MuSC isolation and high‐content transcriptional profiling.ResultsWe report several findings supporting the hypothesis that MuSCs/muscle regeneration are critically involved in post‐sepsis muscle recovery. First, we show that genetic ablation of muscle stem cells (MuSCs) impairs post‐sepsis muscle recovery (maintenance of 5–8% average lean mass loss compared with controls). Second, we observe impaired MuSCs expansion capacity and morphological defects at 26 days post‐sepsis compared with control MuSCs (P < 0.001). Third, when subjected to an experimental muscle injury, sepsis‐recovered mice exhibited evidence of impaired muscle regeneration compared with non‐septic mice receiving the same muscle injury (CLP/DCS injured mean minimum Feret is 92.1% of control injured, P < 0.01). Fourth, we performed a longitudinal RNA sequencing study on MuSCs isolated from post‐sepsis mice and found clear transcriptional differences in all post‐sepsis samples compared with controls. At Day 28, CLP/DCS mice satellite cells have multiple altered metabolic pathways, such as oxidative phosphorylation, mitochondrial dysfunction, sirtuin signalling and oestrogen receptor signalling, compared with controls (P < 0.001).ConclusionsOur data show that MuSCs and muscle regeneration are required for effective post‐sepsis muscle recovery and that sepsis triggers morphological, functional, and transcriptional changes in MuSCs. Moving forward, we strive to leverage a more complete understanding of post‐sepsis MuSC/regenerative defects to identify and test novel therapies that promote muscle recovery and improve quality of life in sepsis survivors.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3