Explainable machine learning model for predicting skeletal muscle loss during surgery and adjuvant chemotherapy in ovarian cancer

Author:

Hsu Wen‐Han1,Ko Ai‐Tung1,Weng Chia‐Sui23,Chang Chih‐Long23,Jan Ya‐Ting4,Lin Jhen‐Bin5,Chien Hung‐Ju6,Lin Wan‐Chun1,Sun Fang‐Ju17,Wu Kun‐Pin1,Lee Jie38ORCID

Affiliation:

1. Institute of Biomedical Informatics National Yang Ming Chiao Tung University Taipei Taiwan

2. Department of Obstetrics and Gynecology MacKay Memorial Hospital Taipei Taiwan

3. Department of Medicine MacKay Medical College New Taipei City Taiwan

4. Department of Radiology MacKay Memorial Hospital Taipei Taiwan

5. Department of Radiation Oncology Changhua Christian Hospital Changhua Taiwan

6. Department of Obstetrics and Gynecology Changhua Christian Hospital Taipei Taiwan

7. Department of Medical Research MacKay Memorial Hospital Taipei Taiwan

8. Department of Radiation Oncology MacKay Memorial Hospital Taipei Taiwan

Abstract

AbstractBackgroundSkeletal muscle loss during treatment is associated with poor survival outcomes in patients with ovarian cancer. Although changes in muscle mass can be assessed on computed tomography (CT) scans, this labour‐intensive process can impair its utility in clinical practice. This study aimed to develop a machine learning (ML) model to predict muscle loss based on clinical data and to interpret the ML model by applying SHapley Additive exPlanations (SHAP) method.MethodsThis study included the data of 617 patients with ovarian cancer who underwent primary debulking surgery and platinum‐based chemotherapy at a tertiary centre between 2010 and 2019. The cohort data were split into training and test sets based on the treatment time. External validation was performed using 140 patients from a different tertiary centre. The skeletal muscle index (SMI) was measured from pre‐ and post‐treatment CT scans, and a decrease in SMI ≥ 5% was defined as muscle loss. We evaluated five ML models to predict muscle loss, and their performance was determined using the area under the receiver operating characteristic curve (AUC) and F1 score. The features for analysis included demographic and disease‐specific characteristics and relative changes in body mass index (BMI), albumin, neutrophil‐to‐lymphocyte ratio (NLR), and platelet‐to‐lymphocyte ratio (PLR). The SHAP method was applied to determine the importance of the features and interpret the ML models.ResultsThe median (inter‐quartile range) age of the cohort was 52 (46–59) years. After treatment, 204 patients (33.1%) experienced muscle loss in the training and test datasets, while 44 (31.4%) patients experienced muscle loss in the external validation dataset. Among the five evaluated ML models, the random forest model achieved the highest AUC (0.856, 95% confidence interval: 0.854–0.859) and F1 score (0.726, 95% confidence interval: 0.722–0.730). In the external validation, the random forest model outperformed all ML models with an AUC of 0.874 and an F1 score of 0.741. The results of the SHAP method showed that the albumin change, BMI change, malignant ascites, NLR change, and PLR change were the most important factors in muscle loss. At the patient level, SHAP force plots demonstrated insightful interpretation of our random forest model to predict muscle loss.ConclusionsExplainable ML model was developed using clinical data to identify patients experiencing muscle loss after treatment and provide information of feature contribution. Using the SHAP method, clinicians may better understand the contributors to muscle loss and target interventions to counteract muscle loss.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3