Iron deficiency is related to lower muscle mass in community‐dwelling individuals and impairs myoblast proliferation

Author:

Vinke Joanna Sophia J.1,Gorter Alan R.1,Eisenga Michele F.1,Dam Wendy A.1,van der Meer Peter2,van den Born Jacob1,Bakker Stephan J.L.1,Hoes Martijn F.34,de Borst Martin H.1ORCID

Affiliation:

1. Departments of Nephrology University Medical Center Groningen, University of Groningen Groningen The Netherlands

2. Department of Cardiology University Medical Center Groningen, University of Groningen Groningen The Netherlands

3. Department of Clinical Genetics Maastricht University Medical Center+ Maastricht The Netherlands

4. CARIM School for Cardiovascular Diseases Maastricht The Netherlands

Abstract

AbstractBackgroundLoss of muscle mass is linked with impaired quality of life and an increased risk of morbidity and premature mortality. Iron is essential for cellular processes such as energy metabolism, nucleotide synthesis and numerous enzymatic reactions. As the effects of iron deficiency (ID) on muscle mass and function are largely unknown, we aimed to assess the relation between ID and muscle mass in a large population‐based cohort, and subsequently studied effects of ID on cultured skeletal myoblasts and differentiated myocytes.MethodsIn a population‐based cohort of 8592 adults, iron status was assessed by plasma ferritin and transferrin saturation, and muscle mass was estimated using 24‐h urinary creatinine excretion rate (CER). The relationships of ferritin and transferrin saturation with CER were assessed by multivariable logistic regression. Furthermore, mouse C2C12 skeletal myoblasts and differentiated myocytes were subjected to deferoxamine with or without ferric citrate. Myoblast proliferation was measured with a colorimetric 5‐bromo‐2′‐deoxy‐uridine ELISA assay. Myocyte differentiation was assessed using Myh7‐stainings. Myocyte energy metabolism, oxygen consumption rate and extracellular acidification rate were assessed using Seahorse mitochondrial flux analysis, and apoptosis rate with fluorescence‐activated cell sorting. RNA sequencing (RNAseq) was used to identify ID‐related gene and pathway enrichment in myoblasts and myocytes.ResultsParticipants in the lowest age‐ and sex‐specific quintile of plasma ferritin (OR vs middle quintile 1.62, 95% CI 1.25–2.10, P < 0.001) or transferrin saturation (OR 1.34, 95% CI 1.03–1.75, P = 0.03) had a significantly higher risk of being in the lowest age‐ and sex‐specific quintile of CER, independent of body mass index, estimated GFR, haemoglobin, hs‐CRP, urinary urea excretion, alcohol consumption and smoking status. In C2C12 myoblasts, deferoxamine‐induced ID reduced myoblast proliferation rate (P‐trend <0.001) but did not affect differentiation. In myocytes, deferoxamine reduced myoglobin protein expression (−52%, P < 0.001) and tended to reduce mitochondrial oxygen consumption capacity (−28%, P = 0.10). Deferoxamine induced gene expression of cellular atrophy markers Trim63 (+20%, P = 0.002) and Fbxo32 (+27%, P = 0.048), which was reversed by ferric citrate (−31%, P = 0.04 and −26%, P = 0.004, respectively). RNAseq indicated that both in myoblasts and myocytes, ID predominantly affected genes involved in glycolytic energy metabolism, cell cycle regulation and apoptosis; co‐treatment with ferric citrate reversed these effects.ConclusionsIn population‐dwelling individuals, ID is related to lower muscle mass, independent of haemoglobin levels and potential confounders. ID impaired myoblast proliferation and aerobic glycolytic capacity, and induced markers of myocyte atrophy and apoptosis. These findings suggest that ID contributes to loss of muscle mass.

Funder

Nierstichting

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3