Adenosine monophosphate‐activated protein kinase is elevated in human cachectic muscle and prevents cancer‐induced metabolic dysfunction in mice

Author:

Raun Steffen H.12ORCID,Ali Mona S.2,Han Xiuqing1,Henríquez‐Olguín Carlos1,Pham T.C. Phung12,Meneses‐Valdés Roberto1,Knudsen Jonas R.1,Willemsen Anna C.H.34,Larsen Steen25,Jensen Thomas E.1,Langen Ramon3,Sylow Lykke12ORCID

Affiliation:

1. Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark

2. Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark

3. Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Medical Center+ Maastricht The Netherlands

4. Division of Medical Oncology, Department of Internal Medicine, GROW School for Oncology and Developmental Biology Maastricht University Medical Center+ Maastricht The Netherlands

5. Clinical Research Centre Medical University of Bialystok Bialystok Poland

Abstract

AbstractBackgroundMetabolic dysfunction and cachexia are associated with poor cancer prognosis. With no pharmacological treatments, it is crucial to define the molecular mechanisms causing cancer‐induced metabolic dysfunction and cachexia. Adenosine monophosphate‐activated protein kinase (AMPK) connects metabolic and muscle mass regulation. As AMPK could be a potential treatment target, it is important to determine the function for AMPK in cancer‐associated metabolic dysfunction and cachexia. We therefore established AMPK's roles in cancer‐associated metabolic dysfunction, insulin resistance and cachexia.MethodsIn vastus lateralis muscle biopsies from n = 26 patients with non‐small cell lung cancer (NSCLC), AMPK signalling and protein content were examined by immunoblotting. To determine the role of muscle AMPK, male mice overexpressing a dominant‐negative AMPKα2 (kinase‐dead [KiDe]) specifically in striated muscle were inoculated with Lewis lung carcinoma (LLC) cells (wild type [WT]: n = 27, WT + LLC: n = 34, mAMPK‐KiDe: n = 23, mAMPK‐KiDe + LLC: n = 38). Moreover, male LLC‐tumour‐bearing mice were treated with (n = 10)/without (n = 9) 5‐aminoimidazole‐4‐carboxamide ribonucleotide (AICAR) to activate AMPK for 13 days. Littermate mice were used as controls. Metabolic phenotyping of mice was performed via indirect calorimetry, body composition analyses, glucose and insulin tolerance tests, tissue‐specific 2‐[3H]deoxy‐d‐glucose (2‐DG) uptake and immunoblotting.ResultsPatients with NSCLC presented increased muscle protein content of AMPK subunits α1, α2, β2, γ1 and γ3 ranging from +27% to +79% compared with control subjects. In patients with NSCLC, AMPK subunit protein content correlated with weight loss (α1, α2, β2 and γ1), fat‐free mass (α1, β2 and γ1) and fat mass (α1 and γ1). Tumour‐bearing mAMPK‐KiDe mice presented increased fat loss and glucose and insulin intolerance. LLC in mAMPK‐KiDe mice displayed lower insulin‐stimulated 2‐DG uptake in skeletal muscle (quadriceps: −35%, soleus: −49%, extensor digitorum longus: −48%) and the heart (−29%) than that in non‐tumour‐bearing mice. In skeletal muscle, mAMPK‐KiDe abrogated the tumour‐induced increase in insulin‐stimulated TBC1D4thr642 phosphorylation. The protein content of TBC1D4 (+26%), pyruvate dehydrogenase (PDH; +94%), PDH kinases (+45% to +100%) and glycogen synthase (+48%) was increased in skeletal muscle of tumour‐bearing mice in an AMPK‐dependent manner. Lastly, chronic AICAR treatment elevated hexokinase II protein content and normalized phosphorylation of p70S6Kthr389 (mTORC1 substrate) and ACCser212 (AMPK substrate) and rescued cancer‐induced insulin intolerance.ConclusionsProtein contents of AMPK subunits were upregulated in skeletal muscle of patients with NSCLC. AMPK activation seemed protectively inferred by AMPK‐deficient mice developing metabolic dysfunction in response to cancer, including AMPK‐dependent regulation of multiple proteins crucial for glucose metabolism. These observations highlight the potential for targeting AMPK to counter cancer‐associated metabolic dysfunction and possibly cachexia.

Funder

Danmarks Frie Forskningsfond

Lundbeck Foundation

Novo Nordisk Fonden

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3