Potential impact of Aeroclipper observations targeting tropical cyclone in the Western Pacific

Author:

Hattori Miki1ORCID,Bellenger Hugo2,Duvel Jean‐Philippe2,Enomoto Takeshi13

Affiliation:

1. Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Yokosuka Kanagawa Japan

2. Laboratoire de Météorologie Dynamique Paris France

3. Disaster Prevention Research Institute, Kyoto University Uji Kyoto Japan

Abstract

AbstractThe Aeroclipper is a new balloon device that can be attracted and captured by tropical cyclones (TC) and perform continuous in situ measurements at the air–sea interfaces. To estimate the potential effect of Aeroclipper observations on the analysis of TCs, virtual Aeroclipper observations targeting TC Haima (October 2016) were synthesized using an idealized surface pressure distribution and best track data and were assimilated using an ensemble data assimilation system. Results show that the assimilation of Aeroclipper measurements may provide a more accurate representation of the TC pressure, wind, and temperature in analyses. This also leads to improved precipitation around the Philippines. The ensemble spread shows that the Aeroclipper measurement assimilation has an impact on the analyses that extends into the tropics from the early stages of TC development. These impact signals propagate westward with easterly waves and eastward with large‐scale convective disturbances. Although the underlying mechanisms need to be further examined and tested using real Aeroclipper measurements, the present study shows that these balloons could provide valuable observations to improve the precision of analyses in presence of a TC. This is a first step toward a study of the impact of the Aeroclipper measurement on TC forecast.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3