Prediction of ionic liquids toxicity using machine learning models for application to gas hydrate

Author:

Abdullah Nurul Hannah1ORCID,Zaini Dzulkarnain1,Lal Bhajan1

Affiliation:

1. Department of Chemical Engineering Universiti Teknologi PETRONAS Seri Iskandar Perak Malaysia

Abstract

AbstractIonic liquids (ILs) are highly favored in the oil and gas industry as gas hydrate inhibitors due to their dual functionality as thermodynamic inhibitor and kinetic hydrate inhibitor. Though known as the “green alternatives,” concerns about the effects of ILs in the environment are rising such that ILs can stabilize in water systems. Furthermore, there are insufficient data on the toxicity of ILs, limiting the use of ILs for industrial applications. Ridge, LASSO, decision tree, random forest, extra tree, gradient boost, and support vector regressions were used to develop IL toxicity predictive models. Random forest yielded the strongest predictive performance, scoring the highest R2 value of 0.86, with mean absolute error and root mean square error values of 0.32 and 0.43, respectively. Feature selections were conducted to investigate the contributions of the five molecular descriptors involved in developing regression models in this work. Descriptor MSDC was found to contribute the highest at 67% in predicting the toxicity of ILs, followed by SNarA and MAXDPC, demonstrating contributions of 15.2% and 14.1%, respectively. Further quantitative structure–activity relationship model validations were executed; the use of three descriptors resulted in a 2% increase in predictive performance for decision tree regression, whereas R2 values remained the same for random forest, extra tree, and gradient boosting.

Funder

Yayasan UTP

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3