A Bayesian reliability analysis exploring the effect of scheduled maintenance on wind turbine time to failure

Author:

Anderson Fraser1ORCID,Dawid Rafael2,McMillan David2,García‐Cava David1

Affiliation:

1. Institute for Energy & Infrastructure University of Edinburgh Edinburgh UK

2. Electronic and Electrical Engineering Strathclyde University Glasgow UK

Abstract

AbstractThis article presents a Bayesian reliability modelling approach for wind turbines that incorporates the effect of time‐dependent variables. Namely, the technique is used to explore the effect of annual services on wind turbine failure intensity through time for turbines within a currently operational wind farm. In the operator's experience, turbines seemed to fail more frequently after scheduled maintenance was performed; however, this is an unexplored effect in the literature. Additionally, the effects of seasonality, year of operation and position in the array on failure intensity are explored. These features were included in a Cox‐like model formulation which allows for time‐dependent covariates. Inference was performed via Bayes rule. Results show a spike in failure intensity reaching 1.57 times the baseline in the six days directly proceeding annual servicing, after which failure intensity is reduced compared to baseline. Also observed is a significant year‐on‐year reduction of failure intensity since the introduction of the site's data management system in 2018, a clear preference for modelling time to failure via a Weibull distribution and a dependence on location in the array with respect to the prominent wind direction. Results also show the benefit of employing a Bayesian regime, which provides easily interpretable uncertainty quantification.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

Reference70 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3