Central projections of auditory nerve fibers in the western rat snake (Pantherophis obsoletus)

Author:

Han Dawei12ORCID,Carr Catherine E.1

Affiliation:

1. Department of Biology University of Maryland College Park Maryland USA

2. Neuroscience and Cognitive Science Program University of Maryland College Park Maryland USA

Abstract

AbstractDespite the absence of tympanic middle ears, snakes can hear. They are thought to primarily detect substrate vibration via connections between the lower jaw and the inner ear. We used the western rat snake (Pantherophis obsoletus) to determine how vibration is processed in the brain. We measured vibration‐evoked potential recordings to reveal sensitivity to low‐frequency vibrations. We then used tract tracing combined with immunohistochemistry and Nissl staining to describe the central projections of the papillar branch of the VIIIth nerve. Applications of biotinylated dextran amine to the basilar papilla (homologous to the organ of Corti of mammals) labeled bouton‐like terminals in two first‐order cochlear nuclei, a rostrolateral nucleus angularis (NA) and a caudomedial nucleus magnocellularis (NM). NA formed a distinct dorsal eminence, consisted of heterogenous cell types, and was parvalbumin positive. NM was smaller and poorly separated from the surrounding vestibular nuclei. NM was distinguished by positive calbindin label and included fusiform and round cells. Thus, the atympanate western rat snake shares similar first‐order projections to tympanate reptiles. Auditory pathways may be used for detecting vibration, not only in snakes but also potentially in atympanate early tetrapods.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sound localization circuits in reptiles;Frontiers in Amphibian and Reptile Science;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3