Deterioration identification method of key optical devices of fiber optical current transformer based on neural network

Author:

Zhang Min1,Guo Xianshan1,Chen Zhengguang1,Zhou Feng2,Hu Haoliang2,Huang Junchang2,Xiao Hao3,Liu Dongwei3,Li Jianguang3,Wang Qianglong3,Deng Xing4ORCID

Affiliation:

1. State Grid Corporation of China Beijing China

2. China Electric Power Research Institute Wuhan China

3. Beijing SWT Intelligent Optics Technology Co., Ltd. Beijing China

4. School of Mechanical and Electrical Engineering China University of Mining and Technology Xuzhou China

Abstract

AbstractOptical fiber current transformers (FOCTs) are affected by various external factors, resulting in the deterioration or even failure of devices, causing changes in critical state quantities, and reducing the accuracy and reliability of products. To solve this problem, based on the neural network algorithm, this paper starts from the four deterioration characteristics of FOCT SLD junction temperature, SLD output optical power, phase modulator half‐wave voltage, and optical fiber sensing ring temperature, and identifies the deterioration of key optical components of FOCT, which provides a basic model and data support for the online monitoring and early warning to improving the stability and reliability of FOCT in long‐term operation.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference17 articles.

1. The fiber optical current transformer (FOCT) technology and it's engineering application;Wang W;Distrib Util,2009

2. Effects of temperature on the performance of twisted optic fiber loop;Xu L;Laser Technol,2005

3. Research on the ECT vibrating test methods;Hu B;Electr Meas Instrum,2013

4. Shake table test on seismic performance of 1000 kV arrester and capacitor voltage transformer interconnected by tube bus;Cheng YF;High Voltage Eng,2014

5. Measurement accuracy of EVT during the surge;Hu B;Electr Meas Instrum,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3