A physics‐informed Bayesian framework for characterizing ground motion process in the presence of missing data

Author:

Chen Yu1ORCID,Patelli Edoardo2ORCID,Edwards Benjamin1,Beer Michael134

Affiliation:

1. Institute for Risk and Uncertainty University of Liverpool Liverpool UK

2. Department of Civil and Environmental Engineering University of Strathclyde Glasgow UK

3. Institute for Risk and Reliability Leibniz Universitẗat Hannover Hannover Germany

4. International Joint Research Center for Resilient Infrastructure & International Joint Research Center for Engineering Reliability and Stochastic Mechanics Tongji University Shanghai China

Abstract

AbstractA Bayesian framework to characterize ground motions even in the presence of missing data is developed. This approach features the combination of seismological knowledge (a priori knowledge) with empirical observations (even incomplete) via Bayesian inference. At its core is a Bayesian neural network model that probabilistically learns temporal patterns from ground motion data. Uncertainties are accounted for throughout the framework. Performance of the approach has been quantitatively demonstrated via various missing data scenarios. This framework provides a general solution to dealing with missing data in ground motion records by providing various forms of representation of ground motions in a probabilistic manner, allowing it to be adopted for numerous engineering and seismological applications. Notably, it is compatible with the versatile Monte Carlo simulation scheme, such that stochastic dynamic analyses are still achievable even with missing data. Furthermore, it serves as a complementary approach to current stochastic ground‐motion models in data‐scarce regions under the growing interests of PBEE (performance‐based earthquake engineering), mitigating the data‐model dependence dilemma due to the paucity of data, and ultimately, as a fundamental solution to the limited data problem in data scarce regions.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3