Utilization of natural hybridization and intra‐cultivar variations for improving soybean yield, seed weight, and agronomic traits

Author:

Jiang Guo‐Liang1ORCID,Mireku Patrick1,Song Qijian2

Affiliation:

1. Agricultural Research Station Virginia State University Petersburg Virginia USA

2. USDA‐ARS Beltsville Agricultural Research Center Beltsville Maryland USA

Abstract

AbstractSoybean (Glycine max) is a highly self‐pollinated species, but cross‐pollination occasionally occurs and variations within cultivars can be observed under certain conditions. To explore the potential uses of natural hybridization and intra‐cultivar/advanced line variations, 78 of breeding lines derived from the segregants of natural hybridization and the intra‐cultivar/line variations and their 17 source cultivars/lines were evaluated over four crop seasons for yield, seed weight, and other agronomic traits. All the lines were also genotyped using BARCSoySNP6K assays to compare the genetic similarities between the new lines and the source genotypes. Analysis of variance results indicated that genotypic differences, year effects, and genotype × year interactions were significant for all the traits. The broad‐sense heritability of the traits was estimated to be 67.22%–98.80%, suggesting that the traits were mainly affected by genetic factors. Compared with the source materials, yield of 34 breeding lines exceeded by >5%, and 17 of them had yield increases of 11.85%–41.59%. Seed weight increased significantly in 24 lines, and 11 lines showed improvements in both seed weight and yield, although there was a negative correlation between these two traits. In addition, 36 and 29 lines showed a shortened period of flowering and maturity, respectively. Plant height of 20 lines decreased by >8.5 cm. Genotypic matching rate between the new lines and the source materials varied from 48.86% to 99.90%. These results demonstrated that both segregations resulting from natural crossing and intra‐cultivar/line variations could be used to improve important traits in soybean.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3