SG12 regulates grain size by affecting cell proliferation in rice

Author:

Hu Li1ORCID,Zeng Jierui2,Diao Xue2,Zhong Yutong2,Zhou Xiaorong2,Wang Hao2,Hu Xiaoling2,Yuan Hua2

Affiliation:

1. College of Agriculture, Forestry and Health The Open University of Sichuan Chengdu China

2. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute Sichuan Agricultural University Chengdu China

Abstract

AbstractThe grain size of rice (Oryza sativa) plays a pivotal role in determining yield. It is crucial to explore the genes related to grain size and analyze their molecular mechanisms to enhance rice yield further. This study identified a small‐grain mutant small grain 12 (sg12), from the ethyl methanesulfonate‐induced mutant library of Shuhui 498, a backbone parent of heavy‐panicle hybrid rice. We found that sg12 rice mutant exhibits a decrease in grain size and 1000‐grain weight, but an increase in grain number per panicle. Genetic analysis indicated that the small grain of sg12 is controlled by a pair of semi‐dominant genes. Furthermore, cytological analysis showed that the number of longitudinal cells in the spikelet hull of sg12 decreased, indicating that SG12 regulates grain size by affecting cell proliferation. In this study, we also identified a candidate gene of SG12 as OsPPKL3, which encodes a putative protein phosphatase with Kelch‐like repeat domains. A single‐nucleotide polymorphism substitution (G/A) occurred in the conserved Kelch domain of OsPPKL3 in the sg12, resulting in the mutation of the 176th amino acid from Ala to Thr, and this amino acid substitution led to significant differences in the three‐dimensional structure of the OsPPKL3 protein. Finally, genetic analysis indicated that OsPPKL3 regulates grain size independent of Oryza sativa BRI1‐associated receptor kinase 1 (OsBAK1) and Oryza sativa Brassinosteroid‐signaling kinase 2 (OsBSK2). Overall, this study identified a new allelic mutant of OsPPKL3, clarified the cytological basis of OsPPKL3 regulating grain size, and emphasized the crucial role of the 176th amino acid in the Kelch domain of OsPPKL3 for its biological function. Our results provided important resources for further studying the molecular mechanisms of OsPPKL3 regulating grain size in rice.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3