Numerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short‐term transient and stationary hemodynamic simulation of postural changes

Author:

Murillo Javier1,García‐Navarro Pilar1

Affiliation:

1. Fluid Dynamic Technologies – I3A, University of Zaragoza Zaragoza Spain

Abstract

AbstractWhen modeling complex fluid networks using one‐dimensional (1D) approaches, boundary conditions can be imposed using zero‐dimensional (0D) models. An application case is the modeling of the entire human circulation using closed‐loop models. These models can be considered as a tool to investigate short‐term transient and stationary hemodynamic responses to postural changes. The first shortcoming of existing 1D modeling methods in simulating these sudden maneuvers is their inability to deal with rapid variations in flow conditions, as they are limited to the subsonic case. On the other hand, numerical modeling of 0D models representing microvascular beds, venous valves or heart chambers is also currently modeled assuming subsonic flow conditions in 1D connecting vessels, failing when transonic and supersonic flow conditions appear. Therefore, if numerical simulation of sudden maneuvers is a goal in closed‐loop models, it is necessary to reformulate the current methodologies used when coupling 0D and 1D models, allowing the correct handling of flow evolution for both subsonic and transonic conditions. This work focuses on the extension of the general methodology for the Junction Riemann Problem (JRP) when coupling 0D and 1D models. As an example of application, the short‐term transient response to head‐up tilt (HUT) from supine to upright position of a closed‐loop model is shown, demonstrating the potential, capability and necessity of the presented numerical models when dealing with sudden maneuvers.

Funder

Gobierno de Aragón

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3