Output feedback distributed optimization algorithms of second‐order Lipschitz nonlinear multi‐agent systems

Author:

Li Guipu1ORCID,Li Chen‐Long2,Yuan Jie3

Affiliation:

1. School of Automation Nanjing Institute of Technology Nanjing China

2. Hangzhou Innovation Institute Beihang University Hangzhou China

3. School of Automation, Southeast University, and Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education Nanjing China

Abstract

AbstractThis paper introduces output feedback distributed optimization algorithms designed specifically for second‐order nonlinear multi‐agent systems. The agents are allowed to have heterogeneous dynamics, characterized by distinct nonlinearities, as long as they satisfy the Lipschitz continuity condition. For the case with unknown states, nonlinear state observers are designed first for each agent to reconstruct agents' unknown states. It is proven that the agents' unknown states are estimated accurately by the developed state observers. Then, based on the agents' state estimates and the gradient of each agent local cost function, a kind of output feedback distributed optimization algorithms are proposed for the considered multi‐agent systems. Under the proposed distributed optimization algorithms, all the agents' outputs asymptotically approach the minimizer of the global cost function which is the sum of all the local cost functions. By using Lyapunov stability theory, convex analysis, and input‐to‐state stability theory, the asymptotical convergence of the output feedback distributed optimization closed‐loop system is proven. Simulations are conducted to validate the efficacy of the proposed algorithms.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3