Isovalerylspiramycin I inhibits proliferation, migration and invasion of osteosarcoma cells by targeting Topoisomerase 1 and suppressing the ataxia telangiectasia and Rad3‐related/checkpoint kinase 1 pathway

Author:

Liang Jinrong1,Zhang Peng2,He Kunyan3,Zhang Yawen1,Ding Xiaomin1,Li Qian1,Zhou Wang1,Hu Haiyan14ORCID,Zhang Jianjun15,Zhou Yan1ORCID

Affiliation:

1. Department of Oncology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China

2. Department of Bone and Soft Tissue Oncology Henan Cancer Hospital Zhengzhou University Cancer Hospital Henan China

3. Ultrasound Department The Fifth Affiliated Hospital Sun Yat‐sen University Zhuhai China

4. Shanghai Clinical Research Ward (SCRW) Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China

5. Department of Oncology Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

Abstract

AbstractPurposeTopoisomerase 1 (TOP1) plays a crucial role in various cell cycle processes and its dysregulation can lead to the development of multiple tumours. However, conventional TOP1 inhibitors such as topotecan and irinotecan have poor clinical efficacy in osteosarcoma (OS) patients. This is partly due to the activation of the ataxia telangiectasia and Rad3‐related/checkpoint kinase 1 (ATR/CHEK1) DNA damage repair pathway, which repairs TOP1 poison‐induced DNA lesions, compromises the cytotoxicity of TOP1 inhibitors and contributes to drug resistance. Therefore, there is a need to develop more effective TOP1 inhibitors for OS.Experimental designIn this study, we evaluated the antitumor effects of isovalerylspiramycin I (ISP‐I), a novel macrolide antibiotic, using various assays including CCK‐8 proliferation assays, wound healing migration assays, Transwell invasion assays, apoptosis, cell cycle, DNA replication and damage analyses on OS cells. We also performed a surface plasmon resonance‐high‐performance liquid chromatography‐mass spectrometry assay to identify ISP‐I's direct target protein in OS. Molecular docking analysis, thermoshift assays, enzyme activity assays and reverse tests were used to confirm ISP‐1′s target. Finally, we tested the efficacy of ISP‐I in vivo using a tumour xenograft model.ResultsOur results showed that ISP‐I significantly suppressed the growth of OS cells both in vitro and in vivo. Furthermore, ISP‐I dose‐dependently inhibited cell migration and invasion, and induced apoptosis and cell cycle arrest in OS cells. Mechanistically, ISP‐I directly bound to TOP1 and inhibited DNA replication. Additionally, ISP‐I significantly downregulated the ATR/CHEK1 pathway, which led to the suppression of DNA damage repair, ultimately augmenting DNA damage and triggering cell death.ConclusionsIn conclusion, our study suggests that ISP‐I could be a novel TOP1 inhibitor that does not activate the ATR/CHEK1 DNA damage repair pathway. This characteristic allows ISP‐I to synergistically inhibit OS cell proliferation, migration and invasion. ISP‐I may represent a promising candidate for the treatment of OS.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3