Engineering gain‐of‐function mutants of a WW domain by dynamics and structural analysis

Author:

Lu Jin1,Rahman Mohammad Imtiazur2ORCID,Kazan I. Can1ORCID,Halloran Nicholas R.2,Bobkov Andrey A.3,Ozkan S. Banu1,Ghirlanda Giovanna2ORCID

Affiliation:

1. Department of Physics and Center for Biological Physics Arizona State University Tempe Arizona USA

2. School of Molecular Sciences Arizona State University Tempe Arizona USA

3. Conrad Prebys Center for Chemical Genomics Sanford Burnham Prebys Medical Discovery Institute California USA

Abstract

AbstractProteins gain optimal fitness such as foldability and function through evolutionary selection. However, classical studies have found that evolutionarily designed protein sequences alone cannot guarantee foldability, or at least not without considering local contacts associated with the initial folding steps. We previously showed that foldability and function can be restored by removing frustration in the folding energy landscape of a model WW domain protein, CC16, which was designed based on Statistical Coupling Analysis (SCA). Substitutions ensuring the formation of five local contacts identified as “on‐path” were selected using the closest homolog native folded sequence, N21. Surprisingly, the resulting sequence, CC16‐N21, bound to Group I peptides, while N21 did not. Here, we identified single‐point mutations that enable N21 to bind a Group I peptide ligand through structure and dynamic‐based computational design. Comparison of the docked position of the CC16‐N21/ligand complex with the N21 structure showed that residues at positions 9 and 19 are important for peptide binding, whereas the dynamic profiles identified position 10 as allosterically coupled to the binding site and exhibiting different dynamics between N21 and CC16‐N21. We found that swapping these positions in N21 with matched residues from CC16‐N21 recovers nature‐like binding affinity to N21. This study validates the use of dynamic profiles as guiding principles for affecting the binding affinity of small proteins.

Funder

Gordon and Betty Moore Foundation

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3