Human Embryonic Stem Cells Exhibit Increased Propensity to Differentiate During the G1 Phase Prior to Phosphorylation of Retinoblastoma Protein

Author:

Sela Yogev12,Molotski Natali2,Golan Saar2,Itskovitz-Eldor Joseph13,Soen Yoav2

Affiliation:

1. Sohnis and Forman Families Center for Stem Cell and Tissue Regeneration Research, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel

2. Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel

3. Department of Ob-Gyn, Rambam Health Care Campus, Haifa, Israel

Abstract

Abstract While experimentally induced arrest of human embryonic stem cells (hESCs) in G1 has been shown to stimulate differentiation, it remains unclear whether the unperturbed G1 phase in hESCs is causally related to differentiation. Here, we use centrifugal elutriation to isolate and investigate differentiation propensities of hESCs in different phases of their cell cycle. We found that isolated G1 cells exhibit higher differentiation propensity compared with S and G2 cells, and they differentiate at low cell densities even under self-renewing conditions. This differentiation of G1 cells was partially prevented in dense cultures of these cells and completely abrogated in coculture with S and G2 cells. However, coculturing without cell-to-cell contact did not rescue the differentiation of G1 cells. Finally, we show that the subset of G1 hESCs with reduced phosphorylation of retinoblastoma has the highest propensity to differentiate and that the differentiation is preceded by cell cycle arrest. These results provide direct evidence for increased propensity of hESCs to differentiate in G1 and suggest a role for neighboring cells in preventing differentiation of hESCs as they pass through a differentiation sensitive, G1 phase. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

Human Frontier Science Organization

Leona M. and Harry B. Helmsley Charitable Trust

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3