Investigating the mechanical properties of sisal/coconut palm hybrid fiber reinforced epoxy composite

Author:

Okpe P. C.12ORCID,Folorunso O.34ORCID

Affiliation:

1. Department of Biomedical Engineering Biomedical Engineering Department Federal College of Dental Technology and Therapy, Enugu Nsukka Nigeria

2. Department of Metallurgical and Materials Engineering University of Nigeria Nsukka Nigeria.

3. Department Electrical and Electronic Engineering Technology University of Johannesburg Johannesburg 2006 South Africa

4. Department of Electrical Engineering Afe Babalola University Ado Ekiti Nigeria

Abstract

AbstractIn this study, a facile hybridization of sisal/coconut palm reinforced epoxy composite, is presented. The fabrication method involved the use of hand lay‐up techniques. The results of the fabricated composites were investigated by using the universal testing machine, hardness testing machine, scanning electron microscope, and an impact testing machine. In order to obtain optimize results for the tensile, flexural, and impact strengths of the fabricated samples, the fabrication procedures involved varying the volume fractions of sisal and coconut palm hybrid with different compositions. The maximum tensile, flexural, and impact strengths measured for the fabricated fiber/polymer composite, are: 45 MPa, 90 MPa, and 38.9 kJ/m2. The scanning electron microscopy (SEM) and energy dispersive x‐ray spectrometry (EDS) of the composites showed that the composites with equal volume fractions of sisal and coconut palm fiber exhibited better performance and better mechanical properties. Furthermore, the improved mechanical properties such as hardness, tensile strength, flexural strength and impact strength were obtained with fibers of longer length. By considering the excellent mechanical properties of the fabricated composite, it is envisaged that the composite be suitable for the manufacturing of helmet, automobile and train coach interiors.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3