Affiliation:
1. Centre for Innovation and Product Development Vellore Institute of Technology Chennai India
2. School of Mechanical Engineering Vellore Institute of Technology Chennai India
3. School of Mechanical Engineering Vellore Institute of Technology Vellore India
4. Department of Mechanical Engineering Anna University Regional Campus Tirunelveli India
Abstract
AbstractIn the past years studies were conducted on natural fibre reinforced polymer composites to observe their mechanical properties in order to decide their industrial applications. These composites have already been used in many applications from aerospace to sporting equipment. These green composites can be used as a replacement for synthetic composites. This is because the natural fibres are eco‐friendly, biodegradable, renewable, etc. In this work, an attempt is made to reinforce fly ash, coir fibre and sugarcane fibre with epoxy polymer matrix. Central composite design under response surface methodology (RSM), one of the approaches of design of experiments (DOE) is used to determine optimum sample preparation conditions of fly ash, coir fibre and sugarcane fibre. Both tensile and flexural (three‐point bending) tests are conducted on these fabricated composites to determine their materialistic characteristics. Analysis of variance (ANOVA) is carried out using Minitab software to find the influence of fly ash, coir fibre, sugarcane fibre on composites. Regression equations obtained from analysis of variance is used to calculate values. Experimental and calculated values are compared and their error % are calculated and tabulated. Response surface optimization study is carried to find the optimized parameters of composites. It is observed that, increase in wt.% of coir fibre and decrease in wt.% of fly ash and sugarcane fibre, increases yield stress and these parameters have mixed impact on ultimate tensile stress. The addition of fly ash, coir fibre and sugarcane fibre in low percentages increases Young's modulus. Increase in wt.% of fly ash and coir fibre and decrease in wt.% of sugarcane, increases flexural modulus and flexural stress.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献