Prediction of wear properties of CaO and MgO doped stabilized zirconia ceramics produced with different pressing methods using adaptive neuro fuzzy inference systems

Author:

Yüksek A. G.1,Boyraz T.2ORCID,Akkuş A.3

Affiliation:

1. Computer Engineering Sivas Cumhuriyet University 58140 Sivas Turkey

2. Metallurgical and Materials Engineering Sivas Cumhuriyet University 58140 Sivas Turkey

3. Mechanical Engineering Sivas Cumhuriyet University 58140 Sivas Turkey

Abstract

AbstractThe present paper describes the fabrication and wear behaviour of CaO and MgO added stabilized zirconia (ZrO2) ceramics produced by powder metallurgy method were examined and modelling with artificial neural networks was studied using the experimental data obtained. CaO/MgO added stabilized zirconia ceramics were fabricated by using a combined method of ball milling, cold pressing ‐ cold isostatic pressing and sintering. CaO and MgO in different amounts (0–8 %mole) were mixed with zirconia. These mixtures were prepared by mechanical alloying method. The green compacts were sintered at 1600 °C. The wear experimental results obtained were converted into data suitable for modelling with artificial neural networks. Wear Load, wear time, CaO and MgO data were used as artificial neural networks input variables. The amount of wear according to the pressing method was taken as the output variables of artificial neural networks. An artificial neural networks was established for the prediction of wear properties of zirconia pressed using the adaptive neuro fuzzy inference systems (ANFIS) learning technique. As a result, a high R2 value of 0.9187 for cold pressing samples and 0,9449 for cold isostatic pressing samples was achieved based on the approach of comparing the success of the model with the test data set and the result produced.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3