Comparative study on periodic immersion+infrared aging corrosion behavior of Q345qNH steel and Q420qNH steel in simulated industrial atmospheric environment medium

Author:

Guo T.1ORCID,Yang H.1ORCID,Wu W.2,Liu X.1,Nan X.1,Hu Y.2

Affiliation:

1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 China

2. Gansu Province Transportat Planning, Survey and Design Institute Co., Ltd Lanzhou 744000 China

Abstract

AbstractThe corrosion behavior of Q345qNH steel and Q420qNH steel in simulated industrial atmospheric environment medium was studied by periodic immersion+infrared aging corrosion experiment. The results show that the corrosion type of both samples is uneven comprehensive corrosion, and the rust layer formed in the later stage of corrosion is relatively dense. But average corrosion rate of Q345qNH steel is always lower than that of Q420qNH steel, and the ratio of Iα‐FeOOH/Iγ‐FeOOH in rust layer is always higher. Compared with Q420qNH steel, Q345qNH steel has fewer surface pits but deeper local pits. The self‐corrosion potential of Q345qNH steel increases obviously, the resistance of the rust layer is larger, and protection to the matrix is stronger. This is because the formation of a large number of corrosion microcells induced by fine lamellar sorbite tissue that uneven distributed in Q420qNH steel, which increases the corrosion rate and makes corrosion uneven, while the larger pearlitic group in Q345qNH steel increases the local corrosion rate. However, the higher chromium/carbon ratio in Q345qNH steel promotes the conversion of lepidocrocite to goethite and inhibits the cathode reaction in the infrared drying stage, improving the density and stability of the rust layer.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3