Evaluation of crack locations in beam using artificial neural network‐based modified curvature damage index

Author:

Gupta S. K.1ORCID,Das S.1

Affiliation:

1. Department of Civil Engineering National Institute of Technology Agartala India

Abstract

AbstractAlthough the frequency response‐curvature methodology is commonly used to detect irregularities in mechanical and civil structures, the artificial neural network‐based frequency response‐curvature damage index method may have good efficacy in the detection and localization of structural damages. By utilizing experimental data sets, a novel method is proposed to pinpoint a saw‐cut damage location and the degree of damage in beam models. Using a dynamic data logger, the frequency response function of a beam model is obtained for altering damage levels at different positions. As frequency response data contains environmental and operational noise, the accuracy of obtained results may get reduced. To improve the accuracy by reducing the noise effect, the experimentally obtained frequency response data is trained through an artificial neural network. Using central difference approximation, the sets of trained modal data are utilized to determine the improved mode shape curvature. The curvature damage index is then obtained by using the improved mode shape curvature for different damaged scenarios to ultimately identify structural damages.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3