Mandibular bone remodeling around osseointegrated functionally graded biomaterial implant using three dimensional finite element model

Author:

Elleuch Sameh1,Jrad Hanen12,Wali Mondher1,Dammak Fakhreddine1

Affiliation:

1. Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, ENIS, Sfax University of Sfax Sfax Tunisia

2. École supérieure des sciences et de la technologie de Hammam Sousse University of Sousse Hammam Sousse Tunisia

Abstract

AbstractDental implantation surgery has been progressed as one of the most efficient prosthetic technologies, however, it still fails very often and one of the main causes is the large difference between implant mechanical properties and those in welcoming bony tissues, making it problematical in osseointegration and bone remodeling. Biomaterial and tissue engineering research shows that there is a requirement in developing implants with Functionally Graded Materials (FGM). Indeed, the great potential of FGM lies not only in the field of bone tissue engineering but also in dentistry. To improve the acceptance of dental implants inside the living bone, FGM were proposed to step up the challenge of ensuring a better match of mechanical properties between biologically and mechanically compatible biomaterials. The aim of the present work is to investigate mandibular bone remodeling induced by FGM dental implant. Three‐dimensional (3D) mandibular bone structure around an osseointegrated dental implant has been created to analyze the biomechanical behavior of the bone–implant system depending on implant material composition. In order to implement the numerical algorithm into ABAQUS software, UMAT subroutines and user‐defined material were employed. Finite element analysis have been conducted to determine the stress distributions in implant and bony system, and to evaluate bone remodeling induced by the use of various FGM and pure titanium dental implants over the period of 48 months.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3