Depleting the 19S proteasome regulatory PSMD1 subunit as a cancer therapy strategy

Author:

Adler Julia1,Oren Roni2,Shaul Yosef1ORCID

Affiliation:

1. Department of Molecular Genetics Weizmann Institute of Science Rehovot Israel

2. Department of Veterinary Resources Weizmann Institute of Science Rehovot Israel

Abstract

AbstractBackgroundProteasome inhibitors are in use in treating certain types of cancers. These drugs inhibit the catalytic activity of the 20S proteasome, shared by all the different proteasome complexes. Inhibitors of the 26S‐associated deubiquitinating activity explicitly inhibit the 26S proteasomal degradation of ubiquitinylated substrates. We have previously reported an alternative strategy that is based on reducing the 26S/20S ratio by depleting PSMD1, 6, and 11, the subunits of the 19S proteasome regulatory complex. Given the addiction of the many cancer types to a high 26S/20S ratio, the depletion strategy is highly effective in killing many aggressive cancer cell lines but not mouse and human immortalized and normal cells.MethodsWe used two aggressive cell lines, MDA‐MB‐231, a triple‐negative breast tumor cell line, and OVCAR8, a high‐grade ovary adenocarcinoma. Cell culture, mouse MDA‐MB‐231, OVCAR8 xenografts, and patient‐derived ovarian cancer xenograft (PDX) models were transduced with lentivectors expressing PSMD1 shRNA. Tumor size was measured to follow treatment efficacy.ResultsUsing different experimental strategies of expressing shRNA, we found that PSMD1 depletion, either by expressing PSMD1 shRNA in an inducible manner or in a constitutive manner, robustly inhibited MDA‐MB‐231, and OVCAR8 xenograft tumor growth. Furthermore, the PSMD1 depletion strategy compromised the growth of the PDX of primary ovarian cancer.ConclusionOur results suggest that reducing the 26S/20S ratio might be a valuable strategy for treating drug‐resistant aggressive types of cancers.

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3