Projected changes in precipitation characteristics over the Drakensberg Mountain Range

Author:

Takong Ridick Roland1ORCID,Abiodun Babatunde J.1ORCID

Affiliation:

1. Climate System Analysis Group, Department of Environmental and Geographical Science University of Cape Town Cape Town South Africa

Abstract

AbstractThis study examines the potential impacts of climate change on the characteristics of precipitation over the Drakensberg Mountain Range (DMR) at different global warming levels (GWLs: 1.5, 2.0, 2.5 and 3.0°C) under the Representative Concentration Pathway 8.5 (RCP8.5) scenario, using dynamical and statistical downscaled datasets. The dynamical datasets consist of 19 multi‐model simulations datasets from the Coordinated Regional Climate Downscaling Experiment (CORDEX), whereas the statistical downscaled datasets comprise 19 multi‐model simulations from the National Aeronautics and Space Administration (NASA) Earth Exchange (NEX) Global Daily Downscaled Projections (NEX‐GDDP, hereafter NEX). The capacity of the CORDEX and NEX datasets to represent past characteristics of extreme precipitation over the DMR was evaluated against eight observation datasets. The precipitation characteristics were represented by eight precipitation indices. Both CORDEX and NEX realistically capture the characteristics of extreme precipitation over the Drakensberg and, in most cases, their biases lie within the observation uncertainty. However, NEX performs better than CORDEX in reproducing most of the precipitation characteristics, except in simulating the threshold of extreme rainfall. The ensemble means of CORDEX and NEX agree on a future increase in the intensity of normal precipitation, in the frequency and intensity of extreme precipitation, as well as an increase in widespread extreme events, with a decrease in the number of precipitation days and continuous wet days. However, they disagree on the projected changes of annual precipitation, for which CORDEX projects an increase over most parts of the DMR, whereas NEX indicates a decrease. The self‐organizing‐map analysis, which reveals diversity in the projection patterns hidden in the ensemble means, shows the most probable combinations of projected changes in the annual precipitation and extreme precipitation events (in terms of intensity and frequency): (a) increase in both annual precipitation and extreme precipitation events; (b) decrease in both annual precipitation and extreme precipitation events; (c) decrease in annual precipitation but increase in extreme precipitation events. The results of this study can thus provide a basis for developing climate change adaptation and mitigating strategies over the DMR.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biophysical system perspectives on future change in African mountains;Transactions of the Royal Society of South Africa;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3