Hydrophilic solvent recovery from switched‐on microdroplet dissolution

Author:

Billet Romain1,Zeng Binglin1ORCID,Wu Hongyan1,Lockhart James2,Gattrell Mike2,Zhao Hongying2,Zhang Xuehua1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada

2. BC Research Inc. Richmond British Columbia Canada

Abstract

AbstractSwitchable hydrophilicity solvents (SHSs) are a unique class of chemical compounds that can be switched between their hydrophobic and hydrophilic forms. The switchable characteristics allow SHSs to be used as emerging, green solvents for sustainable extraction and separation technology. In the production of polymeric microparticles from recycled plastics, SHSs are used to dissolve the polymer and then are switched to the hydrophilic form for separation from the generated polymeric microparticles. However, it is extremely difficult to fully recover the SHS residue from the mixtures. In this work, we will identify the key parameters that determine the level of the solvent residue during the switched‐on dissolution of emulsion microdroplets. The SHS N,N‐dimethylcyclohexylamine from solvent–polymer binary emulsion droplets was switched to the hydrophilic, water‐soluble form, triggered by addition of an acid in the surrounding aqueous phase. By applying a sensitive detection method developed in this work, we compared the levels of SHS residue in polymer microparticles obtained under 30 different dynamical and chemical conditions for the switching processes. The quantitative analysis revealed that residue levels remained constant at varied addition rates and concentration of the trigger solution, but decreased with the increase in organic phase fractions or the decrease in the emulsion temperature. Trapped water in the drops during switched‐on dissolution may have contributed to the high level of solvent residue. The understanding of the new possible mechanism for residual solvent reported in this work may help develop effective approaches for the recovery of switchable solvents in environmentally friendly separation processes.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3