Synthesis and characterization of novel Ru(III) complexes of 2‐aminopyrazine: Interaction with biomolecules, antineoplastic activity, and computational investigation

Author:

Aboelnga Mohamed M.1ORCID,Sahyon Heba A.2ORCID,Elsayed Shadia A.1ORCID

Affiliation:

1. Chemistry Department, Faculty of Science Damietta University New Damietta Egypt

2. Chemistry Department, Faculty of Science Kafrelsheikh University Kafrelsheikh Egypt

Abstract

Ruthenium (III) complexes (13) of 2‐aminopyrazine (pyz) with general formula of [Hpyz][RuCl4(DMSO)(pyz)](1), Na[RuCl4(pyz)(DMSO)] (2), and (Hpyz)[RuCl4(pyz)2].2H2O (3) have been synthesized and characterized by elemental analyses, FTIR, 1H NMR, and UV–visible spectroscopy, along with the magnetic susceptibility and cyclic voltammetry measurements. The molecular structures of the complexes have also been optimized using density functional theory (DFT) calculation which demonstrates an octahedral geometry to be adopted by the Ru(III) ion. The UV–visible and fluorescence spectra were employed to study the interaction of the compounds with nucleic acid (ctDNA and tRNA) and bovine serum albumin (BSA). The data showed a higher tendency for the ligand and its complexes (13) to interact with biomolecules (1 > 2 > 3). All complexes showed potent in vitro anticancer activity against three human cancer cell lines and high safety against normal cell lines as complex (1) is the most active one, it was selected for the flow cytometric evaluation for cell death mode, cell cycle analysis, and matrix metalloproteinase‐9 (MMP9) expression in treated MDA‐231 cells. Proliferating cell nuclear antigen (PCNA) expression and VEGF concentration were evaluated in the treated cells and compared with the untreated ones. Our study proved that complex (1) arrests the cell cycle, inhibits DNA transcription, reduces both MMP9 (validated by our molecular docking investigation targeting MMP9 protein) and PCNA expressions, and induces apoptotic cell death, leading to cancer metastasis prevention.

Funder

Ministry of Higher Education

Academy of Scientific Research and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3