Extending the solid solution range of sodium ferric pyrophosphate: Off‐stoichiometric Na3Fe2.5(P2O7)2 as a novel cathode for sodium‐ion batteries

Author:

Pu Xiangjun1ORCID,Yang Kunran1ORCID,Pan Zibing2,Song Chunhua34,Lai Yangyang1,Li Renjie5,Xu Zheng‐Long5,Chen Zhongxue2ORCID,Cao Yuliang1ORCID

Affiliation:

1. Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences Wuhan University Wuhan China

2. Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering Wuhan University Wuhan China

3. School of Chemistry and Chemical Engineering Jiangsu University of Technology Changzhou Jiangsu China

4. Zonergy Corporation Zigong Sichuan China

5. Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong SAR China

Abstract

AbstractIron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework, cost‐effectiveness, and high energy density. However, the understanding of the crystal structure is scarce and only a limited candidates have been reported so far. In this work, we found for the first time that a continuous solid solution, Na4−αFe2+α/2(P2O7)2 (0 ≤ α ≤ 1, could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P2O7 unchanged. In particular, a novel off‐stoichiometric Na3Fe2.5(P2O7)2 is thus proposed, and its structure, energy storage mechanism, and electrochemical performance are extensively investigated to unveil the structure–function relationship. The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g−1, a working voltage of 2.9 V (vs. Na+/Na), the retention of 89.2% of the initial capacity after 500 cycles, and enhanced rate capability of 51 mAh g−1 at a current density of 1600 mA g−1. This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na4−αFe2+α/2(P2O7)2, offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.

Funder

National Natural Science Foundation of China

Changzhou Municipal Science and Technology Bureau

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3