Affiliation:
1. Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
2. Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering Wuhan University Wuhan China
3. School of Chemistry and Chemical Engineering Jiangsu University of Technology Changzhou Jiangsu China
4. Zonergy Corporation Zigong Sichuan China
5. Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
Abstract
AbstractIron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework, cost‐effectiveness, and high energy density. However, the understanding of the crystal structure is scarce and only a limited candidates have been reported so far. In this work, we found for the first time that a continuous solid solution, Na4−αFe2+α/2(P2O7)2 (0 ≤ α ≤ 1, could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P2O7 unchanged. In particular, a novel off‐stoichiometric Na3Fe2.5(P2O7)2 is thus proposed, and its structure, energy storage mechanism, and electrochemical performance are extensively investigated to unveil the structure–function relationship. The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g−1, a working voltage of 2.9 V (vs. Na+/Na), the retention of 89.2% of the initial capacity after 500 cycles, and enhanced rate capability of 51 mAh g−1 at a current density of 1600 mA g−1. This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na4−αFe2+α/2(P2O7)2, offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
Funder
National Natural Science Foundation of China
Changzhou Municipal Science and Technology Bureau
Subject
Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献