Affiliation:
1. Institute of Advanced Structure Technology Beijing Institute of Technology Beijing PR China
2. Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and Structures Beijing Institute of Technology Beijing PR China
3. School of Light Industry and Engineering Beijing Technology and Business University, China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing PR China
Abstract
AbstractThe matrix cracking of carbon fiber reinforced epoxy resin based composites (CFRPs) at cryogenics (such as liquid nitrogen temperature) is a major issue affecting the normal operation of deep space and deep‐sea detectors, as microcracks caused by the thermal residual stress of both can reduce the structural integrity of the devices. In this work, we report an epoxy (EP) nanofiller CuO nanorods (CuO NRs) with negative thermal expansion properties at cryogenics. Experiments showed that CuO NRs can effectively inhibit the shrinkage of EP at cryogenics and improve the mechanical properties of EP at cryogenics. A temperature dependent prediction model for the tensile strength of EP/CuO NRs was proposed, and the predicted results were in good agreement with experimental results. Finally, through a combination of experiments and theory, it was demonstrated that the tensile strength of EP/CuO NRs at cryogenics is jointly enhanced by the enhancement effect of the nanomaterials and the axial compressive thermal residual stress between EP and CuO NRs.Highlights
Successfully prepared CuO nanorods with negative expansion properties at low temperatures, and found that they can effectively inhibit the shrinkage of epoxy resin at cryogenics.
At cryogenics, the expansion of CuO nanorods enhances their interface effect with epoxy resin and improves the tensile strength of epoxy resin composites.
The theory of tensile strength of epoxy resin at cryogenics was proposed for the first time. Theoretical analysis shows that the low temperature residual thermal stress between CuO nanorods and epoxy resin is the main factor to improve its tensile strength.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献