Alanine boronic acid functionalized UiO‐66 MOF as a nanoreactor for the conversion of CO2 into formic acid

Author:

Faizan Mohmmad1,Pawar Ravinder1ORCID

Affiliation:

1. Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry National Institute of Technology Warangal (NITW) Warangal India

Abstract

AbstractThe alarming increase in the atmospheric CO2 concertation is a global concern today. Thus, the researchers around the globe are finding ways to decrease the amount of CO2 in the atmosphere. Converting CO2 into valuable chemicals like formic acid is one of the best ways to address this issue, but the stability of the CO2 molecule poses a great challenge in its conversion. To date various metal‐based and organic catalysts are available for the reduction of CO2. Still there is a great need for better, robust and economic catalytic systems and the advent of functionalized nanoreactors based on metal organic frame works (MOF) have opened a new dimension in this field. Thus, in the present work UiO‐66 MOF functionalized with alanine boronic acid (AB) have been theoretically investigated for the reaction of CO2 with H2. The density functional theory (DFT) based calculations were carried out to probe the reaction pathway. The result shows that the proposed nanoreactors can efficiently catalyze the CO2 hydrogenation. Further, the periodic energy decomposition analysis (pEDA) unveils important insights about the catalytic action of the nanoreactor.

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3